

1 Introduction .. 5
1.1 Ownership of this document 5
1.2	 API	Definition	and	Overview	 5
1.3 Purpose 6
1.4 Scope 6
1.5	 Key	Advantages	 6
1.6	 Key	Terminologies	 7
1.7	 Definitions,	Acronyms	and	Abbreviations	 7
1.8 Audience 7
1.9	 UAE	API	Guidelines’	Stakeholders	 8

2 API Fundamentals .. 8
2.1	 What	is	an	API	 8
2.2	 API	Example	Use-Cases	 9
2.3	 Why	is	API	Design	Important?	 9
2.4	 Benefits	of	having	API	Guidelines	 10
2.5 API Design Principles 11
2.5.1 Consumer-centric Design 11
2.5.2 API Design 11
2.5.3 Future-Focused Design 12
2.5.4 Stability & Backwards Compatibility 12
2.5.5 Data Privacy and Sensitivity Awareness 13

3 API Management and Operations ... 13
3.1	 API	Prioritization	 14
3.2	 API	Release	Management	 14
3.3	 Lifecycle/Change	Management	 14

Table of
contents

3.4	 Access	Management	 15
3.5	 API	Catalogue	 15
3.6	 API	Environments	 15
3.7	 API	Development	and	Testing	 16
3.8	 API	Test	Data	 17
3.9	 Consumer	Support	 17
3.10	 API	Availability	 18
3.11	 Incident/Event	Management	 18
3.12	 Analytics	 18
3.13	 Backup	Procedures	 19
3.14 API Security 19

4 Service Level Agreement Guidelines ... 21
4.1.1 Onboarding SLA’s	 21
4.1.2 Service Life Cycle State Approval SLA’s 22
4.1.3 Service Availability 22
4.1.4 Service Performance SLA’s 23
4.1.5 Information Exchange SLA’s 24
4.1.6 Change Management SLA’s 25
4.1.7 Incident Management SLA’s 26

5 Technical Guidelines .. 27
5.1 Recommended Protocols 27
5.1.1 REST APIs 27
5.1.2 GraphQL APIs 28
5.1.3 Usage Recommendations 29
5.1.4 SOAP API 29
5.2	 Supported	Features	 29
5.3 Error Handling 36
5.3.1 Error Handling Strategies 36
5.3.2 Types of Errors 36
5.4 Logging 38
5.4.1 Log Levels 38
5.4.2 Log Layout 39
5.5 API Documentation 39
5.5.1 Generating API Documentation 41
5.6 Other Considerations 42

6 References .. 43

UAE Government API First Guidlines

4

1.

Ownership
of this document

Introduction

1.1.

1.Introduction

5

The	UAE	Government	API	First	Guidelines	document	is	the	property	
of	 the	United	Arab	Emirates	Government,	 and	 is	 developed	 by	 the	
Telecommunications	 and	 Digital	 Government	 Regulatory	 Authority	
(TDRA),	in	collaboration	with	Abu	Dhabi	Digital	Authority	and	Smart	
Dubai	 Government.
The	 guidelines	 herewith	 are	 generic	 and	 can	 be	 used,	 reproduced	
or	printed	by	any	government	organization	 in	 the	UAE,	and	can	be	
availed	unaltered	by	any	non-government	organization	 in	 the	UAE.
This	is	a	live	document	and	can	be	updated	based	on	the	new	trends	
and	 updates	 in	 the	 field.	 Any	 unauthorized	 use,	 reproduction	 or	
printing	 of	 this	 document	 is	 strictly	 prohibited	 without	 a	 written	
approval	 from	 the	 TDRA.	

UAE Government API First Guidlines

6

Application	 Programming	 Interfaces (APIs),	 previously	 called	 web	 services,	 are	 standards-based	
interfaces	 that	 allow	 applications	 to	 expose	 their	 functionality	 to	 external	 systems.	 APIs	 define	 how	
one	application	 interacts	with	one	another	 in	a	structured	way	 to	 facilitate	application	 integration	and	
information	exchange.	Software	developers	create	APIs	to	share	functionality	or	data	from	an	application	
they've	developed	with	anyone	who	might	want	to	leverage	that	application’s	functionality.	APIs	are	now	a	
common	standard	across	applications	and	lead	to	a	service-oriented	approach	which	is	an	architectural	
best	 practice.	

1.2. API Definition and Overview

APIs help UAE	government	entities	 increase	their	efficiency	
and	 effectiveness	 by	 providing	 higher	 public	 value	 in	 less	
time,	 cost,	 and	 effort	 while	 ensuring	 real-time	 processing,	
increased	 data	 connectivity,	 and	 flexibility.	 Using	 APIs,	
government	entities	can	expand	old	systems	or	applications	
and	create	new	ones	with	minimal	overhead	and	investment,	
which,	 in	 turn,	enables	 innovation	and	enhances	 the	overall	
public	 value.

The	growth	in	API	usage	is	driven	by	the	need	to	deliver	more	
customer-oriented	functionality	and	a	faster	time-to-market.	
An API-oriented	 architectural	 approach	 facilitates	 industry-
wide	innovation	and	increases	business	agility.

APIs	enable	software	applications	to	communicate	and	interact	with	
each	other	 and	exchange	data	directly	without	 the	need	 for	human	
intervention.	For	any	given	software	or	application,	an	API	specifies	
the	 following:	

• A	mechanism	for	connecting	to	the	software	or	application.	

• The	data	and	functionality	that	is	made	available	for	this	software.	

•Specification	 and	 standards	 that	 need	 to	 be	 followed	 by	 other	
applications	to	 interact	with	the	application's	data	and	functionality.

APIs	expedite	the	realization	
of	 an	 interconnected	 and	
interdependent ecosystem
that	 promotes	 (intra	 and	
cross-sector)	partnerships,	
stimulates	 co-operation	
and	 increases	 information/
resource	 sharing	 between	
organizations.	 APIs	 allow	
you	 to	 build	 reusable	
components	 and	 develop	
a	 platform	 so	 that	 entities	
don't	 have	 to	 reinvent	
the	 wheel	 every	 time.	
APIs	 are,	 in	 essence,	 the	
building	 blocks	 of	 a	 digital	
ecosystem.	 Understanding	
the	 value	 of	 APIs will
help the UAE	 government	
entities	shift	to	a	digital	first	
approach.

1.Introduction

7

The	purpose	of	this	document	is	to	provide	API	guidelines	for	UAE	government	entities.	
The UAE	government	aims	 to	adopt	an	API-first	approach	 for	 the	digital	 transformation	 initiatives.	
Government	entities	and	vendors	can	follow	the	API	guidelines	outlined	in	this	document	for	guidance	
on API	 implementation	to	accelerate	the	development	of	government	APIs	based	on	best-practices.	
This	document	acts	as	a	comprehensive	guide	in	designing	and	developing	the	APIs	 in	government	
organizations.	 This	 approach	 will	 accelerate	 innovation,	 ensure	 responsive	 and	 customer-focused	
initiatives	 and	 capitalize	 on	 the	 power	 of	 the	 community	 at	 large	 for	 public	 value	 creation.	 This	
document	 is	a	working	document	that	will	be	amended	over	time.	The	guidelines	 in	this	document	
contain	no	explicit	 technology	or	protocol	 restrictions;	 rather,	 the	document	offers	best	 practices-
based	 guidelines	 that	 ensure	 that	 UAE	 digital	 government	 APIs	 are	 effective,	 designed	 correctly,	
secure	 and	provide	 value.

1.3.	Purpose

UAE Government API First Guidlines

8

This	document	aims	to	be	a	useful	
tool	in	planning	and	implementing	
digital	 transformation	 in	 UAE	
government	 entities	 and	
organizations.	 It	contains	a	set	of	
high-level	 guidelines	with	 design	
and	 implementation	 guidance,	
along	 with	 low-level	 API	 best	
practices	 to	 guide	 government	
entities	 in	 their	 development	 of	
APIs.

1.4.	Scope

This document will help ensure
that	 government	 services	 are:

• Interoperable	 with	 other	
platforms	 and	 services.

• Less	 likely	 to	 be	 locked	 to	 a	particular	vendor	or	technology.

• More	future-proof	and	easier	
to	update	and	test.

1.Introduction

9

Through	 this	 document,	 the	 UAE	 government	 aims	 to	 encourage	
an	 API	 ecosystem	 to	 expedite	 digital	 transformation	 and	 facilitate	
innovation	 through:

• Faster	 Time	 to	 Market	 –	 allowing	 faster	 response	 to	 market	
opportunities.

• Collaborative	 Model	 of	 Service	 Delivery	–	 enabling	 other	
organizations	 to	 participate	 in	 external	 business	 processes.

• Meeting	the	Goals	of	Open	Data	–	using	APIs	to	open	public	data	
to	public	access,	enabling	private	sector	to	create	their	own	solutions	
based	on	public	data.

• Leveraging	Emerging	Technologies	–	encouraging	uptake	of	new	
and	innovative	technologies	to	keep	pace	with	customer	demands	and	
expectations.

• Enabling	 Channel	 Shift	–	 supporting	 government	 entities	 in	
their	 desire	 to	make	APIs	 their	main	web	 channel	 in	 preference	 to	
developing	 entity-specific	 web	 user	 interfaces.

• Contributing	to	the	UAE	Economy	–	spurring	economic	growth	by	
helping		grow	competitive	businesses	within	UAE	in	the	information-
based	economy.

• Allowing	development	of	innovative	products	through	partnerships	
within	and	across	sectors

• Improving	 Customer	 Interactions	 with	 Government	–	 enable	
integration	 between	 organizations	 and	 allowing	 for	 streamlined	
government	 processes.

• Moving	from	the	model	of	government	entities	as	service	providers	
to	become	an	enabler	for	the	private	sector	while	ensuring	governance	
of	the	same.

• Using	Cloud	Services	–	ensuring	reliable	and	secure	 information	
exchange	with	 Cloud-based	 solutions.

• Improving	quality	and	access	to	information	by	providing	a	robust	
interaction	model.

1.5. Key Advantages

UAE Government API First Guidlines

10

The	following	are	the	terminologies	used	in	the	standard	with	its	description.

1.6.Key Terminologies

Terminology Definitions

API	Service	Provider An	organization	that	exposes	data	through	APIs

API	Consumer Any	organization	or	person	who	uses	the	provider’s	API	to	access	or	send	data

1.Introduction

11

1.7.	Definitions,
Acronyms and Abbreviations

Acronyms Definitions

NGO Non-Government	Organization

REST Representational	State	Transfer

RPC Remote	Procedure	Call

HTTP Hypertext	Transfer	Protocol

SOAP Simple	Object	Access	Protocol

XML Extended	Markup	Language

JSON Java	Script	Object	Notation

LDAP Lightweight	Directory	Access	Protocol

SLA Service-level	Agreement

WSDL Web	Services	Description	Language

UAE Government API First Guidlines

12

• Executives,	Directors	and	Managers	looking	 to	 deliver	
interoperable	 digital	 services.

• Software	 Developer	or	Systems	 Architect	looking	 for	
technical	 guidance.

• Product	Manager	on	 any	 government	 service	 for	 design	
and	 implementation	 guidance.

• Business	 Analyst	considering	 how	 to	 best	 digitize	 and	design	 services.	

• Policy	 Advisor	on	 a	 digital	 service	 looking	 to	 better	
understand	 how	 APIs	 can	 help	 fulfill	 policy	 goals.

• Content	 Designer,	User	 Experience	 Designer,	 or	 a	
practitioner	 of	 any	other	 relevant	 discipline	who	 wants	 to	
familiarize	 themselves	with	 the	 principles	 outlined	 here	 so	
they	 can	 add	 their	 perspective.

The	 target	 audience	 of	 this	
document	 is	 API	 providers	 and	
consumers	who	are	developing	or	
planning	 to	 develop	 applications	
which	 use	 government	 service	
APIs	 such	 as:

1.8.	Audience

1.Introduction

13

1.9. UAE API Guidelines’
 Stakeholders

The	key	stakeholders	for	the	UAE	API	Guidelines	are	the	API	Providers/Consumers	from:

UAE Government	Entities

 • Federal • Local
UAE Semi-Government

 • NGO

 • Private	Sector

UAE Government API First Guidlines

14

This	section	of	the	document	considers	the	business	and	operational	
context	 for	 APIs	 within	 the	 UAE	 government	 and	articulates	 the	
principles	 and	 considerations	 that	may	 impact	 a	 government	 entity	
when	creating	APIs.	The	section	also	looks	at	APIs	in	the	context	of	
their	 impact	on	 the	entity	as	well	as	across	government	and	public	
services.

API Fundamentals

2.

2.API Fundamentals

15

2.1. What is an	API?
An	 API	 is	 an	 application	 layer	 built	 on	 top	 of	 existing	 applications,	
systems,	 or	 software	 which	 allow	 other	 software	 applications	 or	
systems	 to	 use	 the	 existing	 application.	 APIs	 are:

• 	A	service	contract	between	an	API	consumer	and	an	API	provider	
describing	what	 information	 and/or	 functionality	 the	 API	 consumer	
can	access	and	leverage.

• A	 means	 of	 requesting	 and	 retrieving	 information	 from	 an	 API	
provider’s	application	or	system.	The	information	retrieved	can	then	
be	 presented	 to	 end	 users	 in	 a	 context/process-specific	 way,	 e.g.,	
through	 a	mobile	 app	 or	 web	 application.

•	A	way	of	decoupling	system	to	system	interactions	through	well-
designed	 service	 contracts.

•	Not	tied	to	any	specific	programming	language	or	software	product.

APIs	are	commonly	categorized	as	shown	in	the	table	below:

Acronyms Definitions

Internal	API An	API	that	is	used	solely	within	one	entity	by	known	internal	
applications.

External	API An	API	that	is	provided	by	one	entity	and	consumed	by	an	external	
party.

Public	or	Open	API An	API	that	is	provided	to	the	public	and	is	able	to	be	used	by	any	
party	who	wants	to	use	it.	Public	APIs	still	can	have	access	control	
requirements	or	be	for	open	access	by	any	party.

UAE Government API First Guidlines

16

APIs	 can	 do	 more	 than	
share	 data;	 they	 can	 be	 the	
connective	 “glue”	 between	
multiple independent systems.
An	 entity—	 such	 as	 a	 traffic	
department,	 for	 example—
that	 issues	 driver's	 licenses	
could	 build	 an	 API	 that	 takes	
a	 license	 number	 and	 checks	
whether	 it	 has	 expired.	 This	
API	would	be	very	useful	for	a	
car	rental	company	that	wants	
to	verify	that	a	customer	has	a	
valid	 license.

2.2. API	Example Use-Cases

APIs	are	used	in	all	industries.	
When	you	 look	at	 the	weather	
app	on	your	mobile	phone,	the	
information	you	see	is	coming	
from	an	API	built	by	your	local	
weather	service.	Their	weather	
API	 takes	 weather	 prediction	
data	 and	 converts	 it	 into	 a	
format	that	app	developers	can	
use.	With	an	API	proving	data,	
developers	focus	on	building	a	
user-friendly	 interface	 (in	 this	
case,	 your	 phone's	 weather	
app)	 without	 having	 to	 worry	
about	 the	 science	 behind	 the	
data.

2.API Fundamentals

17

•Encourage	consistency	across	
government	 API	 offerings	 and	
thus	 making	 it	 easier	 for	 third	
parties	 to	 build	 solutions	 using	
government	 APIs.

• Capture	API	best	practice	for	
reference	by	the	API	development	
community,	 indicating	 where	
standard	adherence	is	required,	
and	which	areas	allow	for	more	
flexibility.

• Avoid	 different	 government	
entities	developing	or	delivering	
redundant	 APIs.

• Reduce disruption to
application	 developers	 as	
government	 APIs	 evolve.

• Generate	 awareness	 of	 what	is needed to support APIs	 as	 a	
delivered	product	to	private	sector	
customers	 e.g.	 levels	 of	 service,	
support	 capabilities,	 etc.

• Reduce effort for entities
by	 simplifying	 the	 process	 of	
developing	 and	 delivering	 on	
their API	 strategies.

2.3. Why is API Design Important?

Recently,	with	the	rise	of	the	digital	government	and	the	digital	transformation	initiatives,	many	products	
and	services	within	the	government	have	created	APIs	for	consumption	both	 internally	and	externally,	
especially	to	launch	mobile	applications.
These	APIs	have	been	created	based	on	customized	data	models	and	customized	technology/platform
requirements;	in	fact,	there	is	significant	duplication	in	terms	of	APIs	built	for	similar	functionality.	The	
development	of	these	‘closed’	internal	and	redundant	API	ecosystems,	while	deemed	necessary,	have	led	
to	increased	development	and	maintenance	cost.

Although	some	entities	have	been	producing	APIs	 for	some	time,	others	are	taking	their	first	steps	 in	
offering	 APIs	 for	 public	 use.	 API	 standardization	 can	 provide	 significant	 benefits	 to	 support	 this	 API	
development	 across	 UAE	 government	 entities,	 in	 order	 to:

UAE Government API First Guidlines

18

API	 Design	 Guidelines	 –	 address	 a	 broad	 range	 of	 design	
considerations	 leading	 to	 a	 uniform	 API	 design	 language	
across	the	UAE	government	and	enable	developers	to	create	
APIs	 which	 are	 easy	 to	 consume	 and	 well	 documented.	

These	 are	 covered	 in	 detail	 in	 the	 coming	 sections	 of	 this	
document.

Data	Standards	–	define	the	semantics,	schemas,	and	syntax	
of	 the	 data	 (messages)	 being	 delivered	 through	APIs.	 Data	
standards	 provide	 a	 common	 language	 of	 communication	
across	 the	 government.
Standards	help	define	a	frame	of	reference	that	two	parties	
can	use	for	data	exchange	and	dictate	the	format	and	structure	
of	data	exchange.	Standards	define	entity	names,	definitions,	
data	 element	 names,	 formatting	 rules,	 implementation	
guidelines,	 procedures,	 etc.

Information	 Security	 Standards	 –	 are	 defined	 to	 secure	 the	
information	 being	 transmitted	 through	 the
APIs	and	ensure	the	privacy	of	services	data.
Information	security	standards	and	guidelines	 for	designing	
and	 developing	 secure	 APIs	 are	 detailed	 as	 part	 of	 this	
document.

To	ensure	standardized	APIs,	the	following	stand	ards	must	be	present	and	aligned:

Introducing	data	standards	
for APIs help UAE
government	 entities:
a.	Improve	data	quality	and	
interoperability.
b.	 Enable	 reuse	 of	 data	
elements	 and	 metadata,	
thereby	 improving	
reliability	 and	 reducing	
co st .
c. Ensure consistency in
code	 sets	 and	 standard	
lookups.
d.	 Improve	 efficiency	 of	
mapping	 by	 providing	
common	 sets	 of	 core	 data	
elements.

2.API Fundamentals

19

The	benefits	of	providing	guidelines	 to	APIs	design	across	 the	UAE	
government	 can	 be	 summarized	 as	 follows:

• API	 Economy	 –	 Embracing	 standardization	 in	 an	 API	 economy	
enables	 the	 UAE	 Government	 Entities	 to	 be	 prepared	 for	 and	 take	
advantage	 of	 the	 next	 technology	 disruptive	 trend.

• Innovative	new	products	–	Standardization	will	promote	the	creation	
of	innovative	products.	This	will	be	by	exploiting	the	providers’	unique	
capability	 or	 through	 partnerships	 with	 third	 parties	 such	 as	 the	
private	sector.	Additionally,	the	capabilities	of	different	providers	can	
be	merged	to	form	new	product	lines	and	bundle	existing	products.

• Enhanced	 customer	 experience	 –	 well-designed	 APIs	 could	
potentially	 improve	 end	 user	 experience	 through	 timely,	 efficient,	
accurate	and	contextually	relevant	data	 for	customer	reference	and	
decision	 making.	

• Uniform	 integration	 –	 Standardized	 APIs	 across	 entities	 would	
enable	 easier	 integration	 of	 systems	 across	 the	 government	 with	
additional	 benefits	 of	 lowering	 the	 associated	 costs	 and	 promoting	
interoperability.

• Cost	efficiencies	–	Standardization	would	reduce	development	cost	
and	time	to	market	for	new
applications	 and/or	 services.	 It	 will	 also	 ensure	 functionalities	 are	
available	 to	 any	 developer	 independent	 of	 platform.

• Promotes	reuse	and	simplicity	–	APIs	promote	the	reuse	of	existing	
applications	 and	 services	 through	 the	 simplification	 of	 interfaces.	
APIs	 will	 expose	 existing	 information	 assets	 independent	 of	 their	
underlying	 access	 mechanisms/technologies.

• Creating	service	bundles	–	Standardized	APIs	within	the	government	
services	and	across	sectors	will	allow	government	entities	to	set	up	
partnerships	 (inter	 and	 intra-sectors)	 that	 could	 potentially	 create	
new	user	journeys	and	service	bundles.

2.4. Benefits of having API Guidelines

UAE Government API First Guidlines

20

2.5. API Design Principles

⁞ 2.5.1⁝ Consumer-centric Design

In	 alignment	 with	 the	 customer-centric	 service	 design	 principle,	
APIs	 need	 to	 be	 developed	 with	 the	 API	 consumer	 in	 mind.	The	
consumer	 application	 developers	 also	 need	 to	 be	 considered	 since	
the	APIs	must	 fulfill	 their	application	requirements.	APIs	should	be	
developed	as	generic	as	possible	in	order	to	meet	the	basic	needs	of	
all	potential	consumers.	API	developers	should	not	try	to	predict	how	
the	customers	will	interact	with	consuming	applications,	but	should	
allow	the	application	developer	to	innovate	and	best	use	the	API	to	suit	
the	needs	of	 their	application.	By	designing	APIs	 for	 the	consumer,	
agencies	 are	more	 likely	 to	 build	APIs	which	 are	 intuitive	 and	 easy	
to	use	thus	ensuring	uptake	of	their	APIs	and	encouraging	access	to	
public	 information.

The	 development	 and	 delivery	 of	 APIs	 should	 be	 geared	 around	
making	it	as	easy	as	possible	for	developers	to	discover,	understand	
and	develop	against	those	APIs.	So	APIs,	along	with	the	associated	on	
boarding	and	support	processes,	should	be	simple	to	understand	and	
well	described.	

Some	examples	of	this	could	be: • Ensure	a	low	barrier	to	entry	so	it	is	easy	to	start	using	the	API.• Provide	sandbox	APIs	so	application	developers	can	try	out	APIs				and	develop	in	parallel.

• Be	responsive	to	feedback	and	bug	reports.• Provide	automated	on-boarding	processes,	as	manual	processes	
			can	limit	take-up.

• Provide	prototyping	tools	and	support	for	development.

• Create	an	SDK	to	support	an	entity’s	APIs,	including	examples.

2.API Fundamentals

21

APIs	should	be	designed	in	alignment	with	service-
oriented	 architecture	 principles.	 The	 Service	
Provider	API	developers	should	 take	great	care	 in	
designing	 their	 application’s	API.	 Poorly	 designed	
APIs	 will	 significantly	 reduce	 or	 take	 away	 the	
advantages	 of	 an	 API-based	 architecture.
Working	 with	 potential	 Service	 Consumers,	 the	
business	requirements	should	be	gathered.	Based	

on	 the	 consumer	 business	 requirements,	 APIs
should	be	designed	in	fulfillment	of	the	consumer	
business	 requirements.	 The	 interface,	 operations,	
and	 fields	 can	 be	 defined	 and	 agreed	 between	
the	 provider	 and	 consumer	 before	 development	
starts.	These	business	and	technical	details	should	
then	be	formalized	through	a	design	document	or	
specification.

⁞ 2.5.2	⁝ API Design

Good API	design	includes	the	following	principles:	

1.	 Usability	 –	 ensure	 high	 quality	 user	 experience	 for	
consumers.
2.	 Interoperability	 –	 enable	 exchange	 of	 data	 across	
organizations	 without	 any	 dependencies	 on	 underlying	
technologies.
3.	 Reuse	 –	 leverage	 existing	 standards	 and	 taxonomies	 to	
avoid	 duplication	 of	 efforts.
4.	 Independence	 –	 avoid	 dependency	 on	 any	 vendors	 or	
technologies	 to	 provide	 options	 in
delivery	models	and	implementation	technologies.
5.	 Extensibility	 –	 establish	 flexibility	 to	 extend	 APIs	 to	 new	
stakeholders	 and	 business	 channels.
6.	Stability	–	ensure	consistency	and	transparency	of	changes	
through	communications	and	governance.
7.	 Transparency	 –	 provide	 clarity	 on	 environments	 and	
standards	 supported.
8.	Loosely	coupled	–	provide	flexibility	and	minimize	impact	of	
changes	to	operations	of	other	APIs.
9.	Granularity	–	provide	the	appropriate	level	of	functionality	
and	not	be	too	monolithic	or	too	specific.	

Additionally,	 it	 is	 strongly	
encouraged	 that	 application	
developers	start	 to	produce	API	
consuming	 applications	 based	
on	 the	 interface	 specification	
as	 early	 as	 possible.	 This	 agile	
or	 iterative	 approach	 helps	
ensure	 real-world	 feedback	
is	 incorporated	 into	 the	 API	
design	 as	 early	 as	 possible.	
Completeness	is	not	necessarily	
the	 goal,	 especially	 in	 initial	
APIs.	 The	 goal	 should	 be	 to	
get	 early	 partially	 complete	
releases	 out,	 defining	 the	
limited	 capability	 they	 offer,	 to	
enable	 consuming	 application	
uptake.	 Development	 needs	 to	
be	 flexible	 and	 agile	 to	 adapt	
to	 early	 adopters’	 feedback	 in	
identification	 of	 pitfalls	 and	
issues.	 However	 early	 releases	
should	 be	 tested	 and	 stable	 so	
as	 not	 to	 impede	 uptake.	 The	
aim	is	 to	 try,	 then	adapt,	rather	
than	 waiting	 to	 release	 a	 fully	
functional	 API.

UAE Government API First Guidlines

22

⁞ 2.5.3	⁝ Future-Focused Design

Most	entities	will	have	a	variety	of	legacy	systems	that	they	need	to	
continue	 to	 support	 and	service.	 It	 is	 important	 to	 remember	 that	
business,	technology	and	application	architects	should	be	designing	
for	the	future	of	their	organization,	and	not	"hamstring"	their	APIs
under	development	by	designing	them	to	work	in	the	way	the	legacy	
system	currently	works,	or	to	tailor	APIs	so	that	they	work	perfectly	
with	all	legacy	systems.	The	aim	is	to	be	future-focused	(whilst	still	
pragmatic)	and	develop	APIs to meet future needs.

⁞ 2.5.4	⁝ Stability & Backwards Compatibility

It	 is	 important	 that	 APIs	 have	 stability	 (are	 available	 and	 work	
consistently)	and	support	a	velocity	of	change	which	is	acceptable	
to	 the	 application	 developers.	 Early	 versions	 of	 APIs	 should	
be	 available	 via	 pilots	 or	 on	 developer	 portals	 so	 application	
developers	can	work	on	them	and	identify	areas	of	enhancements	
and	 improvements	 before	 an	 API	 goes	 into	 production.
Application	 developers	 will	 not	 always	 be	 able	 to	 adapt	 to	 new	
capabilities	or	changes	to	existing	interfaces	as	quickly	as	the	API
providers	might	 wish,	 due	 to	 organization	 priorities	 and	 funding.	
Hence	minor	 changes	 to	 APIs	 must	 always	 be	 deployed	 as	 fully	
backwards-compatible	upgrades.	For	major	changes,	which	are	not	
backwards	 compatible,	 the	old	API	 version	 should	be	maintained	
alongside	 the	new	version	 for	 an	appropriate	period	 to	 allow	all-
consuming	applications	to	transition.	By	monitoring	usage,	it	should	
be	possible	to	assess	when	an	API	version	can	be	deprecated,	either	
because	 it	 is	no	 longer	being	used	or	because	 the	usage	pattern	
does	not	warrant	maintaining	that	particular	version.	In	any	case,	it	
is	important	to	clearly	communicate	with	your	developer	community	
and	manage	expectations	as	to	longevity	of	a	particular	version	of	
an	API.

2.API Fundamentals

23

⁞ 2.5.5	⁝ Data Privacy and Sensitivity Awareness

APIs	are	used	extensively	for	passing	information,	so	it	is	important	
to	consider	 the	 information	privacy	and	sensitivity	aspects	of	data	
being	 passed	 to	 and	 from	 APIs	 to	 ensure	 that	 data	 is	 protected	
adequately.	Consideration	should	be	given	as	to	whether	a	privacy	
impact	assessment	and/or	a	security	risk	assessment	is	appropriate	
for the API	during	each	stage	of	development,	from	concept	through	
to	implementation.	For	example,	if	the	API	is	providing	programmatic	
access	to	publicly	available	information,	the	privacy	considerations	
are	likely	to	be	minimal	and	the	security	considerations	limited	to	
the	 usual	 suspects.	However,	 privacy	 and	 security	 considerations	
become	 hugely	 important	 if	 the	 API	 is	 providing	 programmatic	
access	 to	 private	 personal	 information.	 In	 this	 situation,	 it	 may	
be	 appropriate	 to	 do	 regular	 assessments,	 especially	 early	 in	 the	
concept	 phase	 to	 ensure	 any	 privacy	 or	 security	 constraints	 are	
understood	 before	 design.
There	is	also	the	issue	that	with	ease	of	data	consumption	comes	
increased	 ability	 to	 combine	 data	 from	 different	 sources,	 which	
increases	privacy	risks	and	the	potential	for	unintended	information	
leakage.	Hence,	an	API	provider	 	should	assess	the	published	API
to	 be	 compliant	with	organization/country	wide	privacy	policy	 and	
regulation.

API Management and Operations
3.

APIs	need	to	be	managed	as	products	similar	to	software	products	that	commercial	entities	release.	API
management	needs	to	be	consistent	across	all	the	APIs	the	provider	is	publishing.

Full	lifecycle	management	of	APIs	includes	development,	deployment,	releases,	and	access	management.	
API	 management	 also	 manages	 the	 availability	 of	 the	 API.	 This	 can	 involve	 leveraging	 features	 like	
throttling	to	make	sure	all	consumers	can	get	access	to	the	API	within	the	bounds	of	the	SLA.	It	can	also	
include	quota	management,	whereby	consuming	applications	are	given	limited	access	(e.g.	a	set	number	
of	calls	per	hour)	to	protect	the	API	from	abuse	or	overuse.	It	should	be	possible	to	use	analytics	to	assess	
whether	throttling	or	quotas	are	needed.

Service	operations	 for	APIs	 covers	 the	actual	delivery	of	 the	services	 to	 the	service	 levels	advertised.	
It	handles	management	of,	and	access	to,	the	API	and	any	underlying	applications,	and	looks	after	the	
infrastructure	which	underpins	 it.	 It	 also	 includes	 consumer	 support	 and	 incident	management.

UAE Government API First Guidlines

24

3.1. API Prioritization

3.2. API Release Management

As	a	first	step,	the	provider	should	identify	and	prioritize	the	APIs	
for	publishing.	The	drivers	for	the	APIs	should	be	considered	and	
the	internal	infrastructure	required	to	develop	these	APIs	assessed.	
Some	of	the	key	considerations	include:

• Assess	cost	and	benefits	of	publishing	APIs.• Alignment	with	Business	and	IT	strategy.

• Current	IT	maturity	to	support	the	design	and	development.

• Degree	of	digitization	in	the	business.• Undertake	business	impact	analysis.

• Identify	and	segment	core	APIs	for	publishing.

Release	management	 is	an	 important	aspect	of	API	 transition.	The	aim	with	API	development	 is	 to	
make	small	changes	and	release	often.
The	release	management	aspects	include:

• Versioning	-	Informing	application	developers:

• Where	the	 interface	specification	has	been	changed,	a	major	version	release	 is	required,	with	
appropriate	warning	to	application	developers,	scheduled	deprecation	of	the	previous	major	version	
and	support	for	migration	to	the	new	version

• A	minor	version	change	release	is	appropriate	for	backend	changes	that	have	little	or	no	impact	
on	the	interface	specification,	and	should	have	minimal	impact	on	consumers
Hence	it	is	important	to	know	who	your	application	developers	are.	When	the	API	changes,	the	interface	
specification	must	also	be	changed	to	reflect	the	changes.

• Planning	API	Rollout:	Ensuring	all	the	API	artifacts	are	rolled	out	effectively	and	on	time	to	the	
correct	 platforms

• Emergency	Patches:	Informing	application	developers	as	to	the	need,	and	schedule,	for	emergency	
patch	rollout,	and	ensuring	emergency	patching	does	not	impede	consuming	applications
Releases	should	be	made	to	a	test/development	environment	first.

3. API Management and Operations

25

An API	has	its	own	lifecycle,	and	it	needs	to	be	managed	through	the	whole	of	its	lifecycle,	from	
creation	to	deprecation.	This	involves:

⸅ Monitoring	usage	to	make	sure	an	API,	or	API	version,	is	only	retired	when	the	majority	
of	consuming	applications	have	migrated	off	it

⸅ Trimming	APIs	 –	 removing	 features	and	 functionality	which	are	unused,	have	never	
been	used	or	are	not	likely	to

⸅ Ensuring	 the	API	 roadmap	 is	up	 to	date	and	gives	a	good	 indication	of	when	major	
changes	 are	 scheduled	 to	 be	made	 to	 each	AP

3.3. Lifecycle/Change
 Management

3.4. Access Management
The	first	interaction	Service	Operations	is	likely	to	have	with	APIs	is	the	initial	act	of	on-boarding	
application	developers.	On-boarding	should	provide	everything	the	application	developer	needs	
in	order	to	interact	with	the	API,	including	access	to	a	test	environment	running	a	representative	
copy of the API	underpinned	by	test	data,	documentation	and	preferably	examples	to	work	with.	
Consideration	may	 be	 needed	 as	 to	whether	 all	 application	 developers	 can	work	with	 shared	
test	 data	 or	 if	 they	 need	 individual	 test	 data	 specific	 to	 their	 purposes.	 In	 their	 day-to-day	
development	activities	application	developers	will	want	to	be	able	to	test	the	API	without	making	
(computationally	or	potentially	financially)	costly	calls	out	 to	 third	party	services,	so	 it	may	be	
beneficial	to	provide	mock	versions	of	those	APIs	specifically	for	testing	purposes.	For	full	system	
tests,	however,	application	developers	will	want	their	applications	to	test	the	full	flow	including	
any	third-party	service,	so	an	automated	mechanism	for	that	may	need	to	be	built.
Access	management	includes	providing	mechanisms	through	which	application	developers	can	
apply	for,	and	receive,	permission	and	associated	details	to	use	the	API	i.e.	external	developers	
who	want	to	build	applications	which	make	use	of	the	API	and	applications	which	will	ultimately	
be	 integrated	with	 the	API.	 It	 also	 covers	managing	access	 to	 the	API,	 including	specific,	fine	
grained	control	for	consuming	applications.	This	allows	operations	to	deploy	access	policies	to	
ensure	a	consuming	application’s	access	to	the	API	is	in	line	with	agreed	constraints.

{

}

UAE Government API First Guidlines

26

3.6. API Environments

Before	 an	 API	 is	 released	 for	 application	 developers	 to	 access,	 the	
API’s	description	and	 interface	specification	should	be	published	 to	
an	API	catalogue.	The	API	catalogue	will	contain	a	list	of	all	the	APIs	
offered,	along	with	their	interface	specifications	and	guidance	on	how	
to	gain	access,	and	use	the	APIs,	including	the	granularity	of	access	
control.	This	information	needs	to	be	up	to	date	and	accurate	in	order	
to	 be	 relied	upon	by	API	 application	developers.		 Some	API	hosting	
technologies	can	offer	an	automatic	cataloguing	capability.
An	 API	 catalog	 can	 be	 exposed	 to	 Service	 Consumers	 to	 allow	
developers	to	peruse	available	APIs	and	request	access	to	those	APIs.

API	Provider	should	provide	the	following	environments	for	any	of	their	published	APIs:

3.5. API Catalogue

Environment Type Environment Purpose

Non Production

Development Build	APIs	and	configure	assets.

Test Used	for	Integration	Testing

Production

Staging
Used	for	Performance	Testing,	Training	and	User	
Acceptance	Testing

Production Production

Disaster	Recovery	
(DR)

Disaster	Recovery	in	case	of	any	failure

Sandbox
Sandbox	Environment	for	Public/Open	APIs

3. API Management and Operations

27

Please	note	that	the	staging	(or	pre-production)	environment	is	considered	a	production	environment.	
The	 staging	 environment	 should	 adhere	 to	 the	 same	SLA	 levels	 as	 the	 production	 environment	 and	
should	mirror	the	specifications	of	production.	The	staging	environment	is	essential	for	final	verification	
of	functionality	before	moving	to	production	for	all	Service	Consumers.
The	 test	 environment	 should	 also	 be	 stable	 so	 that	 Service	 Consumer	 developers	 can	 use	 them	 to	
develop	 their	 applications.

3.7. API Development and Testing

• Agile	Software	Development	 -	Using	Agile	practices	 ideally	
suit	this	form	of	iterative	development	as	they	focus	on	developing	
small,	incremental	releases,	'failing	fast'	(finding	out	what's	wrong	
early	rather	than	too	late)	and	frequent	delivery	of	products.

• Configuration	Management	-	All	the	components	which	make	
up	an	instance	of	the	API	should	be	held	within	version	control,	so	
that	 it	 is	possible	to	rebuild	a	previous	version	 if	necessary.	This	
involves:

• Version	controlling	API	interface	specifications• Version	controlling	the	associated	API	code• Keeping	track	of	dependencies	(e.g.	external	libraries	being	
used within the API code)

• Making	 sure	 access	 policies	 for	 individual	 consumers	 are	
version	 controlled

• Being	 able	 to	 reliably	 recover	 all	 the	 elements	 of	 previous	
iterations	 of	 APIs	 and	 rebuild/redeploy	 if	 required

• DevOps	 -	 Following	 a	 DevOps	 approach	 enables	 Service	
Providers	 to	 automate	 and	 streamline	 all	 development	 and	
deployment	 activities.	 DevOps	 allows	 automated	 build,	 testing	
and	deployment	of	APIs	and	the	associated	software	whenever	an	
update	 of	 the	 code	 is	 placed	 into	 configuration	 management.

• Automated	testing	-	To	make	the	incremental	release	pattern	
efficient,	it	is	advisable	to	develop	automated	tests	in	conjunction	
with	the	API	code	so	that	testing	becomes	an	intrinsic	part	of	the	
build	process.

APIs	 need	 to	 be	 developed	 in	
a	 collaborative,	 flexible	 and	
adaptive	 way.	 Once	 the	 API
interface	 specification	 is	 agreed,	
iterative	 releases	 with	 limited	
functionality	 can	 be	 deployed	
quickly	 by	 the	 Service	 Provider	
instead	 of	 waiting	 for	 the	 entire	
functionality	 of	 the	 API	 to	 be	
completed.	 This	 approach	
allows	 Service	 Consumers	 to	
start	 using	 the	 API	 immediately	
without	having	to	wait	for	the	final	
product.	 Initial	 versions	 of	 APIs
can	have	functionality	stubbed	out	
(resources	 which	 can	 be	 called	
but	 return	 sample	 responses)	
or	 only	 offer	 partial	 functionality	
as	 long	 as	 the	 documentation	
indicates	 this.	 Support	 for	 this	
form	of	iterative	development	can	
be	 enabled	 though:

UAE Government API First Guidlines

28

3.8. API Test Data
Service	Providers	must	provide	adequate	test	data	for	their	APIs.	This	
test	data	is	mandatory	for	Service	Consumers	to	test	APIs	and	develop	
their	applications.	
Test	data	must	have	the	following	characteristics:

• Comprehensive	 -	 Test	 data	must	 allow	Service	Consumers	 to	
test	all	business	flows	that	are	covered	by	the	APIs.	Often,	test	data	
is	 provided	 to	 cover	 “happy	 flows”,	 and	 edge	 cases	 are	 neglected.	
Without	proper	test	data	coverage,	a	Service	Consumer	cannot	have	
any	assurance	that	their	developed	application	will	work	in	all	cases.

• Reusable	-	As	Service	Consumer	application	developers	develop	
their	application,	they	will	need	to	test	APIs	over	and	over	again.	After	
development	is	complete,	the	QA	process	of	the	application	will	also	
require	full-cycle,	full-coverage	testing	of	the	application	that	uses	the	
APIs.	This	testing	can	only	be	performed	with	a	reliable	and	reusable	
set	of	test	data.	Some	Service	Providers	provide	specialized	APIs	that	
reset	the	test	data	of	their	main	APIs.

API	test	data	must	be	provided	for	all	environments:

• Test/Integration	 Environment	 -	 The	 test	 data	 for	 the	 test	
environment	will	 be	 the	most	 comprehensive.	Having	 this	 test	data	
will	 allow	 developers	 and	QA	 specialists	 to	 test	 and	 retest	 APIs	 as	
their	 development	 progresses.

• Staging/Pre-production	-	The	staging	environment	should	have	
adequate	 test	 data	 to	 cover	 all	 scenarios.	 The	 staging	 environment	
will	be	the	final	step	for	application	developer	and	QA	specialists	to	
ensure	 that	 their	application	 is	working	as	expected.	This	 test	data	
will	often	be	used	for	automated	testing	on	deployments.	If	the	staging	
environment	contains	production	data,	any	sensitive	data	should	be	
masked	or	scrambled	to	avoid	confidentiality	breaches.

• Production	Environment	-	Some	test	data	must	be	provided	for	
the	 production	 environment	 as	 a	 final	 assurance	 that	 the	 API	 and	
application	using	it	are	behaving	as	expected.	Sensitivity	must	be	used	
with	production	testing	since	some	test	scenarios,	if	not	executed	with	
caution,	 may	 affect	 real	 users	 and	 processes	 and	 potentially	 have	
legal	 ramifications.	

3. API Management and Operations

29

3.9. Consumer Support
Application developers will need a variety of support
mechanisms to aid their use of an API, including:

• Getting	set	up	to	use	the	API• Understanding	what	to	use	during	development

• Support	for	testing	of	their	application	in	use	of	the	API• Reporting	issues	with	the	APIThese	mechanisms	should	include:

• Telephone support

• Support	desk	email	address

• Online forum/support community
It	could	also	include:

• Interactive	real	time	support
It	 is	 useful	 to	 include	 indications	 of	 the	 level	 of	 support	 so	 that	
application	developers	know	which	form	of	support	will	most	rapidly	
address	 their	 issue	 e.g.	 5-9	 telephone	 support,	 24x7 community
forum,	 response	 times	 to	 API	 failure	 reports.
There	 should	 also	 be	 support	 for	 handling	 requests	 for	 change,	
modifications	or	additions	needed	to	the	API.	It	should	also	be	possible	
to	capture	and	handle	requests	 for	new	APIs.

It	is	important	not	just	to	monitor	and	gather	operational	data	about	
running	APIs,	but	also	to	use	that	information	to	improve	API	offerings.	
API	availability	is	of	utmost	importance	to	API	consumers,	so	the	API	
providers	need	to	monitor	availability,	usage	and	respond	dynamically	
to	 increases	 in	demand.	This	requires	comprehensive	monitoring	to	
identify	potential	issues,	outages,	bottlenecks	or	overloaded	APIs	and	
to	ramp	up	availability	to	meet	demand.
Proactive	 monitoring	 of	 API	 by	 the	 Service	 Provider	 is	 mandatory.	
Any	 issues	or	 outages	 should	be	proactively	 identified	and	 rectified	
immediately.	 The	 Service	 Provider	 should	 not	 rely	 on	 the	 Service	
Consumer	 to	 notify	 them	 of	 outages	 or	 issues.

3.10. API Availability

UAE Government API First Guidlines

30

3.11. Incident/Event
 Management

3.12. Analytics

Incident and event management is geared around events picked up through monitoring, and
unplanned incidents, and involves substantial amounts of communication. This includes:

• Monitoring	the	system	as	a	whole	to	
identify	potential	issues	and	pre-emptively	
apply	mitigation	e.g.	throttling	to	counter	
potential	DoS	attacks.

• Informing	application	developers	of	
remediation	of	incidents,	including	resolution	
plans	and	predicted	completion	times.

• Capturing	reports	of,	then	informing	
application	developers	of,	unforeseen	incidents	
which	are	currently	causing	a	disruption	of	
service.

• Deploying	temporary	fixes,	if	necessary.

Capturing	and	analyzing	data	about	an	API	in	operation	will	pull	out	information	useful	to	adapting	
to	changes	in	demand.	It	is	therefore	useful	to	gather	analytical	data	around:

• Take-up	metrics,	end	user	analytics	such	as	location

• Tracking	API	consumers,	their	registrations	and	API	usage

• API	performance	–	identifying	most	commonly	used	APIs	calls	so	they	can	be	made	efficient

• Event	behavior	(e.g.	common	patterns	of	behavior)

• Trace	and	diagnostics	dataFrom	an	API	take-up/consumption	perspective	it	is	useful	to	capture	who,	where,	when,	how,	how	
often,	and	what	device	type	is	being	used.	Analysis	of	this	data	can	then	be	used	to	demonstrate	
ROI.
Performance	metrics	are	also	useful,	such	as	error	rate,	throughput,	response	time,	transaction	
speed,	 backend	 performance,	 cache	 performance.	 These	 values	 can	 help	 identify	 trends	 and	
bottlenecks.

3. API Management and Operations

31

3.14. API Security

Service Security
Categorization Classification Type of information

High Confidential Military/police	services,	national	security	related	services,	
legal	services	and	sensitive	entities’	services

Medium	 Official	Use Confidential	citizen	information,	financial	information	and	
corporate	details

Low Public Non	sensitive	private	information	such	as	names,	
addresses,	email	addresses

The	data	should	be	backed	up	at	the	application	level	and	operating	system	level	at	regular	intervals.	The	archived	
data	will	be	retained	for	a	specified	period	of	time	so	that	it	can	be	recovered	in	case	of	any	unforeseen	issues.	Data	
backups	are	taken	without	bringing	the	applications	down,	hence	without	impacting	the	running	applications.	The	
backup	jobs	are	run	at	off	peak	hours	so	that	the	backup	process	will	not	impact	the	performance	of	the	running	
applications.
The	host-based	backup	at	the	operating	system	level	is	the	full	backup	of	the	server	and	should	be	done	weekly	
on	the	development	and	test	servers.	The	file	system-based	backup	should	be	done	daily	on	the	development	
servers	and	weekly	on	the	test	servers.		
The	backup	strategies	for	application	and	database	components	in	Production	environment	is	explained	below:

3.13. Backup
 Procedures

Application	backups	are	taken	at	file	system	level	
daily	 and	 twice	 a	 week	 at	 the	 operating	 system	
level	and	would	be	retained	for	a	week	so	that	 in	
case	of	issues,	data	backup	would	be	available	for	
the	 previous	 7	 days.	 The	 backup	 should	 include	
the	 application	 configuration	 changes,	 log	 files,	
messages,	 deployment	 changes,	 etc.	 These	
backups	 will	 be	 stored	 in	 the	 storage	 appliance	

Database	 backups	 The	 backups	 are	 scheduled	 to	
run	every	day	and	the	backups	are	retained	for	one	
week.	These	backups	should	also	be	stored	in	the	
storage	 appliance	
Note:	The	backup	strategy	for	Staging	and	DR	
environments	is	defined	to	be	the	as	the	same	as	
Production	environment

Services	shall	be	classified	based	on	the	level	of	security	as	given	in	the	table	below.		This	shall	help	to	
protect	the	service	(based	on	its	classification)	from	unauthorized	access	and	to	address	the	integrity	
and	confidential	requirements.

UAE Government API First Guidlines

32

Note:	
1. Services	 by	 default	will	 be	 “Public”	 classified,	which	 implies	 that	 the	 published	 services	 are	
viewable	to	all	and	API	key	is	required	for	service	consumption.		In	cases	where	the	services	are	
classified	as	“Confidential”	or	“Official	Use”,	Service	Providers	shall	decide	the	service	Consumers	
who	are	eligible	to	view	their	services.

Run	time	rules	and	actions	need	to	be	implemented	to	assure	the	confidentiality	using	web	service	level	
security.	The	actions	to	be	applied	depend	on	the	sensitivity	of	the	data	transferred	and	transactions	
performed	 in	 the	 services.	 	 The	 following	 table	 shows	 the	 runtime	 actions	 based	 on	 the	 above	
categorization.

Security
categorization

Run time action/rule

High
• Authenticate	consumers	against	a	user	directory	

• Message-level	security
 »	Username/password	credentials
 »	Digital	certificate	authentication	
 »	Data	encryption

• API	identification	• Source IP

• HTTP	Basic	authentication.• Transport-Level	Security	(https	using	SSL/TLS	with	minimum	256	bit	
encryption)

• Geo	Location/Geo	Velocity/IP	Fencing/Error	rates
Medium

• Authenticate	consumers	against	Service	Provider	user	directory	

• Transport-Level	 Security	 (https	 using	 SSL/TLS	 with	 minimum	 -256bit	
encryption)

• GEO	Location	/	IP	Fencing• API	identification	• HTTP	Basic	authentication.• Transport-Level	Security	(https	using	SSL/TLS	with	minimum	256	bit	encryption)

Low
• Authenticate	consumers	against	Service	Provider	user	directory	

• API	identification• Transport-Level	Security	(https	using	SSL/TLS	with	minimum	256	bit	encryption)

3. API Management and Operations

33

Service Level
Agreement
Guidelines

4.
Without	robust	service	level	management,	 it	will	be	hard	to	engender	trust	in	government	APIs,	which	
will	negatively	impact	uptake.	Application	developers	will	need	to	know	how	long	the	API	will	exist,	what	
commitment	there	is	to	its	availability	and	performance,	and	what	support	is	offered	to	those	who	consume	
the API.	Without	 this,	API	 usage	will	 be	 based	 on	 an	 untrusted	model,	 where	 application	 developers	
prepare	for	the	API	being	unavailable.	This	results	in	consuming	applications	using	APIs	to	top	up	local	
caches	of	data,	or	to	support	existing	batch	processes,	missing	out	on	the	real	time	benefits	of	APIs.

There	are	several	parameters	that	need	to	be	agreed	between	the	stakeholders	for	the	easy	usage	of	the	
published	APIs.

〈/〉We	gave	here	some	examples	on	potential	SLA’s	that	need	to	be	considered	to	ensure	
successful API	 governance
The SLA’s	can	be	classified	as	follows:

1}	Onboarding	SLA’s
2}	Service	Provider	Availability	SLA’s
3}	Service	Performance	SLA’s
4}	Information	Exchange	SLA’s
5}	Change	Management	SLA’s
6}	Incident	Management	SLA’s〈/〉

UAE Government API First Guidlines

34

The	following	environments	together	decides	the	availability	of	the	platform.

• Service	Provider	Platform• Service	Consumer	Platform

• Service	Provider	Environment

⁞ 4.4.1⁝ Onboarding SLA’s

⁞ 4.4.2⁝ Service Life Cycle State Approval SLA’s

⁞ 4.4.3⁝ Service Availability

The	entities	will	be	on	boarded	to	consume	the	published	service	as	one	of	the	following:

• Service	Consumer

• Service	Provider	
The	 onboarding	 process	 is	 clearly	 defined	 for	 both	 publishing	 a	 service	 and	 consuming	 a	
service.	Some	of	the	steps	involved	in	the	process	should	require	action	from	one	or	more	of	
the	stakeholders	involved	as	well	as	provide	approvals	on	certain	states	of	a	service.	

The	 published	 services	will	 be	 governed	 via	 Service	 Lifecycle.	 This	
model	defines	set	of	states	that	make	up	the	lifecycle	of	a	service	and	
the	transition	between	the	states	are	governed	by	predefined	approver	
groups	from	Service	Provider	and	Service	Consumer

The	below	is	a	sample	of	the	Service	Life	Cycle	State	Approval	SLA
Table	4	Service	Life	Cycle	States

Parameter Value Responsible

Approval of Service
Life Cycle States

2	day Service	Provider

2	day Service	Consumer

4. Service Level Agreement Guidelines

35

All	Services,	Platforms,	and	 Infrastructure	should	adhere	 to	 the	SLA’s	 that	must	be	defined	by	 the	
organization.	 This	 excludes	 the	 regular	maintenance	 windows.	

In	 case	 of	 planned	 maintenance	 window	 or	 any	 unplanned	 outage,	 the	 Service	 Provider	 will	 be	
responsible	 to	 notify	 the	 service	 consumers.

The	Service	Provider	needs	to	ensure	that	the	service	is	highly	available	and	this	availability	may	vary	
depending	on	the	service	and	the	Service	Provider	entity	that	is	described	in	the	Service	Performance	
SLA’s section.

The	below	is	a	sample	of	the	Service	Availability	SLA

Parameter Value Environment Responsible

Service Provider
Availability % 99.9 % Staging	&	Production Service	Provider

Service Provider
Availability Hours 7*24 Staging	&	Production Service	Provider

Parameter Value Responsible

API Response Time (Simple API) < 200 ms Service	Provider

API Response Time (Complex
API with intensive processing) < 750 ms

Service	Provider

API Availability
%99.9 Service	Provider

Clear	guidelines	and	agreed	SLA	levels	should	be	set	for	each	environment,	including	test	environments.	

As	a	general	guideline,	APIs	should	adhere	to	the	following	performance	metrics:

The	SLA’s	specific	to	a	service	performance	can	be:

• Response Time

• Throughput• Service	Availability• Secured	Message	Transmission

These	SLA’s	shall	be	defined	in	the	service	requirements	document	and	can	be	agreed	upon	
and	signed	off	with	the	stakeholders	depending	on	the	nature	of	the	engagement.	

⁞ 4.4.4⁝ Service Life Cycle State Approval SLA’s

•

UAE Government API First Guidlines

36

Ministry X

Ministry Y

If	adherence	to	the	aforementioned	API	performance	guidelines	cannot	be	achieved	due	to	application	or	
software	constraints,	the	Service	Provider	can	consider	the	following	options:

• API	Service	Caching	–	If	an	API	returns	a	set	of	data	that	does	not	change	much	or	has	a	limited	set	
of	possible	returned	datasets,	then	the	Service	Provider	application	can	cache	the	API	data	and	return	it	
from	the	cache	instead	of	burdening	the	application	on	each	call.	Each	API	application	will	have	data	or	
response	caching	mechanisms	that	can	be	used.	Any	caching	must	carefully	consider	caching	TTL	(“time-
to-live”)	values	in	order	to	ensure	that	stale	data	is	not	shared	with	consumers.

• API	Publish-Subscribe	Model	–	If	an	API	executes	a	batch	or	business	process	that	takes	minutes	
or	even	hours,	then	the	publish-subscribe	model	can	be	used.	The	same	API	will	be	redesigned	to	have	
2	APIs.	The	first	API	will	be	offered	by	the	Service	Provider	and,	when	called,	will	initiate	the	request	in	
the	back-end	application.	A	second	API	will	be	hosted	on	the	Service	Provider	or	Service	Consumer.	If	the	
second	API	is	hosted	by	the	Service	Provider,	the	Service	Consumer	will	 invoke	the	second	API	after	a	
certain	time	after	the	first	API	invocation	when	the	API	results	will	be	ready.	If	the	second	API	is	hosted	by	
the	Service	Consumer,	then	the	Service	Provider	will	simply	invoke	the	second	API	once	the	processing	of	
the	first	request	is	complete.	The	following	diagram	illustrates	how	the	Publish-Subscribe	model	works.

Ministry Z
Native	Service	ZNative	Service	Y

Government Service Bus

Virtual	Service	A

TOPIC

Native	Service	X

Custom	Service	BCustom	Service	B

4. Service Level Agreement Guidelines

37

⁞ 4.4.5⁝ Information Exchange SLA’s

⁞ 4.4.6⁝ Change Management SLA’s

The	information	passing	through	service	Provider	and	consumer	will	
be	maintained	by	the	following	mechanisms:

1}	The	information	is	exchanged	only	within	a	secure	network.
2} Services	can	be	consumed	only	after	approvals	from	both	Service	
Provider	and	consumer
3}	 Appropriate	 Authentication	 and	 Authorization	 mechanisms	 are	
implemented.

Quality of Data:
The	 Service	 Providers	 will	 be	
responsible	 for	 the	 quality	
of	 data	 (correctness	 and	
coverage)	 that	 is	 shared	
through	 their	 services	
exposed.	 The	 decision	 and	
implementation	 of	 sharing	
complete	 information	 or	
partial	 information	will	be	 the	
responsibility	 of	 the	 Service	
Provider.

Confidentiality of Data:
Service	 Consumer	 will	 be	
responsible	 for	 maintaining	
the	 confidentiality	 of	 the	 data	
consumed	 from	 the	 services	
Provider.	 Service	 Consumer	
should	 use	 this	 data	 only	 for	
the	intended	purpose	approved	
by	 their	 organization	 and	
compliant	 to	 any	 applicable	
laws	and	regulations	set	by	the	
government	 of	 UAE

As	part	of	the	onboarding	
process to consume
a	service,	the	Service	
Provider	and	Service	
Consumer	are	expected	
to	have	a	Memorandum	of	
Understanding	(MoU)	or	any	
other	binding	agreement	that	
is	signed	between	themselves	
or follow the protocol or
process	specific	to	entities	on	
the	quality	and	confidentiality	
of	data.

Any	ad	hoc	changes	made	to	the	service	or	the	service	will	impact	the	ability	of	the	Service	Consumer	to	
consume	the	service.	It	is	important	that	any	changes	to	the	service	should	follow	change	management	
process.
This	is	also	applicable	for	any	planned	down	times	of	published	service.
Following	is	the	summary	of	potential	changes	and	the	stakeholder	responsible	to	comply	with	the	SLA’s	
defined	in	this	section.

Parameter Responsible Impacted Stakeholders

Any changes to published Service Service	Provider Service	Consumer

Any downtimes to published Service
Service	Provider Service	Consumer

Any Changes to Consuming Application
Service	Consumer Service	Provider

UAE Government API First Guidlines

38

⁞ 4.4.7⁝ Incident Management SLA’s

Following SLA’s needs to be adhered by the stakeholders:

Service Providers

In	such	scenarios,	the	following	approach	needs	to	be	adhered	to:

• The	Service	Provider	needs	to	inform	the	Service	Consumer	about
	the	change	in	advance.

• The	Service	Provider	must	assess	the	impact	to	the	service	and	
the	Service	Consumer	and	plan	the	change	in	a	coordinated	manner.

• The	changes	to	the	service	need	to	be	tested	along	with	service	
and	 the	 Service	 consumer	 in	 test	 environments	 before	 the	 Service	
Provider	 promotes	 the	 changes	 to	 the	 production	 environment.

The	Service	Provider	may	have	a	need	 to	make	one	or	more	of	 the	
following	 changes	 to	 the	 service	 hosted	 in	 their	 environment:

• Change	the	service’s	address	(end	point,	bindings)• Change	the	service’s	business	logic	that	may	or	may	not	impact	
the	behavior	of	the	service

• Change	the	service’	contract	or	structure.• Changing	the	IP	address	of	the	consuming	application

• Changing	the	domain	name

The	above	is	only	a	list	of	the	examples	and	not	exhaustive.

An	 Incident	 is	 an	unplanned	 interruption	 to	 the	Service	Provider	or	
degraded	 performance	 of	 the	 platform.	
A	Service	Provider	should	provide	the	first	line	of	support	for	incidents	
and	can	be	contacted	through	suitable	channels.	Incidents	have	to	be	
logged	in	an	Incident	Management	system	and	the	support	team	from	
Service	Provider	will	evaluate	the	incident	and	involve	one	or	more	of	
the	following	teams	to	get	the	incident	resolved.

• Service	Provider	Team	–	in	case	of	issues	in	the	published	service

• Service	Consumer	IT	Team	–	in	case	of	issues	in	the	consuming	
application	

4. Service Level Agreement Guidelines

39

The	priority	of	incidents	will	be	classified	as	per	the	below	guideline:

Priority Definition

Priority Level 1 — Critical

Critical Business Impact

The	 incident	 has	 caused	 the	 platform	 to	 stop	 immediately	 and	
completely,	which	is	affecting	primary	business	processes	of	Service	
Consumers.	
There	is	no	available	way	to	work	around	this	problem.	

Priority Level 2 — High

Major Business Impact

The	incident	affects	a	business	process	so	severely	that	the	business	
function	of	Service	Consumer	is	severely	degraded.	
There	may	be	a	way	to	work	around	this	problem,	but	the	solution	is	
not	easily	sustainable.

Priority Level 3 — Medium

Moderate Business Impact

The	incident	affects	a	business	process	so	that	certain	functions	are	
unavailable	to	Service	Consumers,	or	the	platform	is	degraded.	
There may	be	a	way	around	this	problem.	

Priority Level 4 – Low

Minimal/No Business Impact

The	incident	has	very	minimal	or	no	impact	to	the	business	function	
of	the	Service	Consumers.

UAE Government API First Guidlines

40

Priority Resolution Time

Priority 1 (P1) 8 hours

Priority 2 (P2) 16 hours

Priority 3 (P3) 4	days

Priority 4 (P4) 8	days

The	below	is	a	sample	of	the	Service	Consumers	Incident	SLA

4. Service Level Agreement Guidelines

41

Technical Guidelines5.

5.1. Recommended
 Protocols

⁞ 5.1.1⁝ REST APIs

The	following	protocols	are	recommended	whenever	implementing	an	API
1} REST
2} GraphQL

REST	(REpresentational	State	Transfer) API	are	the	most	commonly	used	standard	for	APIs	today.	REST
is	an	architectural	style	 introduced	 in	2000,	based	on	a	set	of	principles	 that	describe	how	networked	
resources	are	defined	and	addressed.	Data	and	Functionality	are	considered	resources	and	are	accessed	
using	Uniform	Resource	Identifiers	(URI) REST	have	six	guiding	principles	which	are	as	follows:

UAE Government API First Guidlines

42

1} Client–server	 –	 By	 separating	 the	 user	 interface	 concerns	 from	 the	 data	 storage	 concerns,	we	
improve	 the	 portability	 of	 the	 user	 interface	 across	multiple	 platforms	 and	 improve	 scalability	 by	
simplifying	 the	 server	 components.
2} Stateless	 –	Each	 request	 from	client	 to	 server	must	 contain	all	 of	 the	 information	necessary	 to	
understand	the	request,	and	cannot	take	advantage	of	any	stored	context	on	the	server.	Session	state	
is	therefore	kept	entirely	on	the	client.
3} Cacheable	–	Cache	constraints	require	that	 the	data	within	a	response	to	a	request	be	 implicitly	
or	explicitly	labeled	as	cacheable	or	non-cacheable.	If	a	response	is	cacheable,	then	a	client	cache	is	
given	the	right	to	reuse	that	response	data	for	later,	equivalent	requests.
4} Uniform interface	–	By	applying	the	software	engineering	principle	of	generality	to	the	component	
interface,	the	overall	system	architecture	is	simplified	and	the	visibility	of	interactions	is	improved.	In	
order	to	obtain	a	uniform	interface,	multiple	architectural	constraints	are	needed	to	guide	the	behavior	
of	components.	REST	is	defined	by	four	interface	constraints:	identification	of	resources;	manipulation	
of	resources	through	representations;	self-descriptive	messages;	and,	hypermedia	as	the	engine	of	
application	state.
5}	Layered	system	–	The	layered	system	style	allows	an	architecture	to	be	composed	of	hierarchical	
layers	 by	 constraining	 component	 behavior	 such	 that	 each	 component	 cannot	 “see”	 beyond	 the	
immediate	 layer	 with	 which	 they	 are	 interacting.
6}	Code	on	demand	(optional)	–	REST	allows	client	functionality	to	be	extended	by	downloading	and	
executing	code	 in	 the	 form	of	 applets	or	 scripts.	 This	 simplifies	clients	by	 reducing	 the	number	of	
features	 required	 to	 be	 pre-implemented.

The	 data	 should	 preferably	 be	 exchanged	 in	 JSON	 (JavaScript	 Object	 Notation)	 format	 which	 is	 a	
lightweight	 human	 readable	 data-interchange	 format.	 	 JSON	 is	 a	 text	 format	 that	 is	 completely	
language	independent	but	uses	conventions	that	are	familiar	to	programmers.	JSON	stores	data	in	an	
array/ordered	 list	 of	 name-value	 pairs.

5. Technical Guidelines

43

GraphQL	is	a	language	for	querying	databases	from	client-side	applications.	It	provides	a	set	of	tools	that	
operated	over	a	single	endpoint	using	HTTP.		On	the	backend,	GraphQL	specifies	to	the	API	how	to	present	
the	data	to	the	client.	GraphQL	redefines	developers’	work	with	APIs	offering	more	flexibility	and	speed	
to	market;	it	improves	client-server	interactions	by	enabling	the	former	to	make	precise	data	requests	
and	obtain	no	more	and	no	less,	but	exactly	what	they	need.	GraphQL	offer	Strongly	Typed	Scheme	for	
API	Queries.	It	ensures	there	is	no	Over-Fetching	on	Under-Fetching	of	data	saving	time	and	bandwidth.	
Unlike	REST	it	requires	no	versioning	and	it	elegantly	handles	mutations,	filtering,	sorting	and	pagination	
etc.	It	transforms	the	shape	of	the	response	using	the	GraphQL	execution	library	to	match	the	shape	of	
the	query

⁞ 5.1.2⁝ GraphQL APIs

REST GraphQL

Architecture Server	Driven Client	Driven

Organized in terms of: Endpoints Scheme	and	Type	System

Operations

Create
Read
Update	
Delete

Query
Mutation
Subscription

Data Fetching Fixed	 data	 with	 Multiple	 API	
Calls

Specific	data	with	single	API	call

Performance
Multiple	 network	 calls	 take	 up	
more time Fast

Development Speed
Slower Rapid

Self Documenting
No Yes

Web Caching
Yes via	libraries	built	on	top

File Uploading
Yes No

Recommended Use Cases
Simple Apps
Resource-Driven	APps

Multiple	 Microservices	 Mobile	
Apps

UAE Government API First Guidlines

44

⁞ 5.1.3⁝ Usage Recommendations

⁞ 5.1.4⁝ SOAP API

REST	API	is	the	commonly	used	API	protocol	today	and	supported	by	
a	large	developer	community	versus	GraphQL	which	has	an	evolving	
community.	While	 we	 recommend	 REST	 APIs	 to	 be	 used,	 GraphQL	
should	be	explored	where	the	use-cases	justify	the	use	of	GraphQL.	
GraphQL	 should	 be	 considered	 for	 Apps	 for	 Smart	 Devices	 where	
Bandwidth	usage	matters	as	well	as	applications	where	nested	data	
needs	to	be	fetched	in	a	single	call	or	in	case	of	a	composite	pattern,	
where	application	retrieves	data	from	multiple	different	storage	APIs.	
GraphQL	should	be	avoided	in	case	of	OpenAPIs	for	external	entities.	

SOAP	 (Simple	 Object	 Access	 Protocol)	 is	 a	 messaging	 protocol	
specification	 for	 exchanging	 structure	 information	 in	 the	
implementation	 of	 web	 services.	 It	 allows	 web	 service	 based	
applications	to	communicate	between	entities.	SOAP	predates	REST	
API	has	been	a	very	popular	API	mechanism.	Still	many	systems	only	
support SOAP APIs.
It	 is	 our	 recommendation	 to	 use	 SOAP	 only	 where	 legacy	 systems	
cannot	 support	 REST	 API	 or	 GraphQL	 APIs.		

5. Technical Guidelines

45

It	is	recommended	that	the	Service	Providers/Consumers	incorporate	the	below	features	while	developing	
their	services.

5.2. Supported Features

Table	12	Recommended	Features

Attributes/Feature Guidelines/Recommendations

Logging

• Service	Providers/consumer	should	have	appropriate	 logging	
mechanisms	which	will	 help	 trace	 a	 request/response	 end	 to	 end	
and	provides	 information	during	 a	 root	 cause	 analysis

• The	following	log	levels	can	be	set: » Info
 »	Warning
 » Error
 »	Debug
Note:	Debug	should	be	turned	off	in	Production	by	default	and	can	be	
turned	on	a	need	basis.
	 	 The	following	details	are	logged:
 »	Log	Level
 »	Log	Message
 »	Transaction	ID
 »	Service	Provider/Consumer
 »	Timestamp

• In	case	of	an	API	with	PII	(Personal	Identifiable	Information),	all	
API	transactions	must	be	logged	as	to	when	data	was	provided	and	
to	whom.	It	should	be	compliant	with	all	applicable	data	protection	
regulations	 (Example	 ISR)	and	should	be	capable	of	detecting	and	
protecting	fraud	and	misuse.	

UAE Government API First Guidlines

46

Attributes/Feature Guidelines/Recommendations

Error Handling

• Service	Providers	are	recommended	to	handle	all	the	exceptions	
related	 to	 the	 service	 and	 send	 appropriate	 response	 codes	 and	
descriptions	in	the	response.	The	error	codes	and	descriptions	need	
to	be	shared	with	Service	Consumers

• Service	Providers	are	recommended	to	handle	all	the	exceptions	
that	could	occur	when	invoking	the	published	service

• API	Consumers	should	implement	appropriate	retry	mechanism	
when	invoking	a	service	API

• Appropriate	alerts/notifications	should	be	configured• Service	Provider	should	implement	an	error	handling	framework	
defined	for	handling	error/exceptions

• The	following	details	are	logged	in	a	service	specific	log	file	in	
case	of	an	error:
 »	Error	Code
 »	Error	Message	(stack	trace)
 »	Transaction	ID
 »	Timestamp
 »	Consumer	application

• For	 Publish-Subscribe	 scenarios,	 a	 retry	 mechanism	 is	
implemented	in	case	the	message	delivery	to	the	subscribing	service	
fails

• Appropriate	 notifications	 should	 be	 sent	 on	 encountering	 an	
error

Auditing

• Service	Providers	should	ensure	key	information	is	captured	in	
the	request	and	response	header	and	logged,	so	that	the	information	
is	available	to	be	audited	and	used	for	root	cause	analysis	and	non-
repudiation

• Every	service	will	log	key	information	in	the	request/response	
header	when	it	is	invoked	and	this	information	is	available	for	auditing

• Historical	data	(error	logs,	audit	logs)	is	stored	in	database	and	can	be	used	for	root	cause	analysis,	debugging	and	non-repudiation

5. Technical Guidelines

47

Attributes/Feature Guidelines/Recommendations

Security

• Service	Providers	should	ensure	appropriate	authentication	and	authorization	mechanisms	are	implemented	for	the	Service	API.

• Service	 Consumers	 should	 ensure	 appropriate	 use	 of	 the	
information	 shared	 by	 the	 Service	 Providers

• To	invoke	a	published	service	 in,	a	service	consumer	needs	a	
minimum	of	HTTP	Basic	Authentication	over	SSL.		Additional	security	
mechanisms	will	be	implemented	within	service	Provider	based	on	
the	confidential	nature	of	the	service

• The	 security	 mechanism	 required	 for	 invoking	 the	 service	
is	 implemented	 in	 Service	 Provider	 environment.	 This	 security	
mechanism	 is	 defined	 and	 owned	 by	 the	 service	 Provider

• Service	 Provider	 can	 support	 the	 following	 authentication	
mechanisms:
 »	Username,	password
 »	Certificates
 » Keys

Dependability\ • Service	Provider	should	take	measures	for	API	Dependability	
including	prevention	for	Denial	of	Service	as	well	as	monitoring	of	
APIs	for	unusual	activity

UAE Government API First Guidlines

48

Attributes/Feature Guidelines/Recommendations

Performance

• Service	 Provider	 should	 be	 responsible	 for	 the	 performance	
of	the	service	and	hence	should	fine-tune	the	performance	of	their	
services

• The	Service	Provider	should	adhere	with	the	base	lined	SLAs	
like	response	time,	throughput,	etc.	when	the	service	is	invoked	by	
consumer

• Key	performance	metrics	(average	response	time,	throughput,	
etc.)	are	captured	to	assess	the	performance	of	the	services	

• The	key	performance	 improvement	considerations	with	most	
Service	 Providers	 are:
 »	In-memory	caching
 »	Multithreading
 »	Memory	management
 »	Compression	of	any	attachments

Monitoring

• Service	 Providers	 should	 monitor	 their	 applications	 for	
performance,	 availability,	 etc.

• Service	Provider	implements	appropriate	mechanisms	to	monitor	
the	 services	 (for	 performance,	 availability,	 SLA,	 failure,	 success,	
response	time,	etc.)	hosted	 in	the	 integration	platform

• Monitoring	 is	 implemented	 for	 the	 infrastructure	 (CPU	 usage,	
memory	usage,	availability,	etc.)	in	which	Service	Provider	is	hosted

Usage of Unique IDs

• It	is	recommended	that	the	Service	Provider	stores	data	with	a	
unique	identifiers	and	invoke	the	service	with	this	unique	ID

• A	unique	identifier	should	uniquely	identify	the	records	retrieved	by	a	service

• Unique	identifier	can	be	a	single	ID	like	Emirates	ID

• Unique	 identifier	can	be	a	composite	key	 like	combination	of	
Passport	 Number,	 Name,	 Nationality	 and	 Date	 of	 birth

5. Technical Guidelines

49

Attributes/Feature Guidelines/Recommendations

Scope of service
• The	scope	of	a	service	should	be	clearly	defined• A	service	should	map	to	a	single	business	function

• Technical	 and	 non-functional	 details	 of	 a	 service	 are	 clearly	
defined	while	designing	a	service	 in	Service	Provider	Environment

Segregation of operations

 Service	Consumer	should	segregate	operations	where	required •(within	a	service	(E.g.,	summary	vs	detailed	information

• Operations	 of	 the	 same	 service	 should	 represent	 the	 same	
business	 function

• A	service	can	be	created	corresponding	to	multiple	other	service	
operations	or	can	be	segregated	for	every	service	operation	based	
on the need

Namespace
• It	is	recommended	that	service	Providers	should	define	and	use	
their	own	namespaces

• Appropriate	namespaces	for	element	types	and	attribute	names	
will	be	defined	to	avoid	element	name	conflicts

 Hosting your API

All	API	naming	in	URLs	(including	the	name	of	your	API,	namespaces	
and	resources)	should:

• use	nouns	rather	than	verbs• be	short,	simple	and	clearly	understandable

• be	 human-guessable,	 avoiding	 technical	 or	 specialist	 terms	
where	 possible

• use	hyphens	 rather	 than	underscores	 as	word	 separators	 for	
multiword	 names
For	example:	[api-name].apis.government.ae

UAE Government API First Guidlines

50

Attributes/Feature Guidelines/Recommendations

Grouping of attributes
• It	is	recommended	that	Service	Providers	should	group	related	
attributes	 while	 defining	 the	 service	 request	 and	 response	 (E.g.,	
Nationality	 Code,	Nationality	Description	 in	 Arabic	 and	Nationality	
Description	 in	English	can	be	grouped	 to	a	Nationality	node)

Validation

• It	is	recommended	that	the	Service	Providers	perform	appropriate	
validation	of	the	request	(E.g.,	mandatory	fields	should	not	be	empty,	
enumeration	of	fields	where	possible,	etc.)

• Appropriate	 technical	 and	 business	 validations	 should	 be	
executed	 by	 the	 entities	 and	 proper	 error	 or	 response	 messages	
(code	 and	 description)	 should	 be	 sent

• Input	Validation	-	An	API	must	check	that	data	is	both	syntactically	
and	semantically	valid	(in	that	order)	before	using	it	in	any	way.
 » Syntax	validity	means	that	the	data	is	in	the	form	that	is	expected.	
For	 example,	 an	 if	 an	 API	 expects	 a	 four-digit	 “account	 ID”,	 then	
the	API	should	check	that	the	data	provided	is	exactly	four	digits	in	
length,	and	consists	only	of	numbers.	As	a	general	principle	special	
character	are	not	allowed	as	a	part	of	any	input	unless	there	is	a	very	
specific	business	requirement
 » Semantic	validity	includes	only	accepting	input	that	is	within	an	
acceptable	range	for	the	given	application	functionality	and	context.	
For	example,	a	start	date	must	be	before	an	end	date	when	choosing	
date	ranges

• Output	Validation	–	An	API	must	ensure	that	the	produced	output	
must	be	filtered	and	sanitized	to	prevent	unintended	and	unexpected	
interpretation	and	operation	of	data	at	the	receiving	end.

Reusability
• It	 is	 recommended	 that	 Service	 Providers	 design	 and	 build	
services	 which	 can	 be	 consumed	 and	 used	 by	 multiple	 entities

• Service	Provider	should	reuse	common	frameworks	like	Logging	
framework	and	Error	handling	framework

5. Technical Guidelines

51

Attributes/Feature Guidelines/Recommendations

Lookups

• It	is	recommended	that	Service	Providers	maintain	codes	which	
are	industry	standards	(like	ISO	codes)	and	descriptions	in	English	
and	Arabic	for	the	lookups	(country	code,	document	type	code,	etc.)	
provided	to	the	service	Providers

• It	is	also	recommended	to	use	enumeration	whenever	possible.		
For	E.g.,	Gender	can	have	enumeration	values	of	Male	or	Female

Content-type • The	content-type	 (XML,	JSON)	shall	be	defined	by	 the	Service	
Provider	 to	 be	 uniform	 for	 request	 and	 response	 and	 should	 be	
followed	 by	 the	 service	 consumer

Naming Standards
• Service	Providers	should	use	unique	and	standard	application	
names

• Service	 Providers	 can	 follow	 camel	 casing	 (E.g.,	
sampleServiceName)	 for	 their	 services

• All	services	and	elements	must	follow	proper	naming	standards

Addressing Scheme URI	Addressing	Scheme	in	lines	with	RFC	3986	should	be	followed

Session Tracking

• Service	Providers	should	have	placeholders	in	the	request	and	
response	 header	 to	 capture	 a	 unique	 Transaction	 ID	 to	 track	 the	
message.

• Service	Providers	to	generate	a	unique	identifier	and	pass	it	in	
the	request	header	of	each	message

• Service	Provider	to	map	the	Transaction	ID	in	the	response

• Service	Provider	should	track	and	log	the	unique	Transaction	ID	passed	in	the	request	and	response	header

• This	unique	Transaction	ID	will	be	used	for	root	cause	analysis	
and	for	end	to	end	tracking	of	the	request/response

UAE Government API First Guidlines

52

Attributes/Feature Guidelines/Recommendations

Consumer Identification

• Service	Providers	should	have	placeholder	in	the	request	header	to	identify	the	end	consumer	of	the	service

• Service	Provider	to	pass	the	entity	name	in	the	request	header	
and	 the	 API	 Key	 in	 the	 authorization	 block	 of	 HTTP	 header	 while	
invoking	the	service.		It	is	recommended	to	pass	the	same	standard	
entity	name	in	the	request	header	for	all	consuming	services	by	the	
service	 consumer

• Service	Provider	logs	the	service	consumer	name	passed	in	the	
request	header	to	track	the	consumer	of	the	service

• Service	Provider	should	generates	API	keys	that	shall	be	used	to	identify	the	service	consumer

Authentication

• Service	 Providers	 should	 be	 able	 to	 authenticate	 Service	
Consumers	 when	 service	 is	 invoked

• Service	Provider	 to	pass	 the	authentication	details	 for	Service	
Consumer	validate	it	(E.g.,	Basic	Authentication	details	in	the	HTTPS	
header)

• Service	Provider	shall	authenticate	 the	service	consumer	who	
invoke	 the	 services

Inter environment connectivity

• Service	Providers	should	open	firewall	ports	to	allow	the	Service	Consumer	 servers	 connect	 to	 the	 services	 hosted	 in	 appropriate	
environments	 in	 the	entity	premises

• Service	Providers	production	environment	should	be	configured	to	
accept	connections	from	service	consumer	Production	environment

• Service	Provider	Test	and	Staging	environment	should	be	used	
for	 Integration	 testing	and	User	Acceptance	Testing	respectively

Date and time
• It	is	recommended	using	the	ISO	8601	standard	to	represent	date	
and	time	in	the	response.	This	helps	people	read	the	time	correctly.

⸅ It	 is	 recommended	 to	 use	 a	 consistent	 date	 format.	 For	
dates,	this	looks	like	2020-08-09.	For	dates	and	times,	use	the	form	
2020-08-09T13:58:07Z.

5. Technical Guidelines

53

Attributes/Feature Guidelines/Recommendations

Physical location
• It is recommended to use the World Geodetic System 1984 (WGS
84)	standard.

• It is recommended to use GeoJSON	for	the	exchange	of	location	
information.

Encoding • It is recommended to use the Unicode	Transformation	Format	
(UTF-8)	standard	when	encoding	text	or	other	textual	representations	
of	data.

Data requests

• It	is	recommended	to	configure	APIs	to	respond	to	‘requests’	for	
data	rather	than	‘sending’	or	‘pushing’	data.	This	makes	sure	the	API	
user	only	receives	the	information	they	require.

• It	 is	 recommended	 that	an	API	must	answer	 the	request	 fully	
and	specifically.	For	example,	an	API	should	respond	to	the	request	
“is	 this	 user	 married?”	 with	 a	 Boolean.	 The	 answer	 should	 not	
return	any	more	detail	than	is	required	and	should	rely	on	the	client	
application	 to	 correctly	 interpret	 it.

Data Fields design

Service	 Providers	 should	 consider	 how	 the	 fields	 will	 meet	 user	
needs.	 They	 can	 also	 regularly	 test	 the	 documentation.
For	example,	to	collect	personal	information	as	part	of	the	dataset,	
before	 deciding	 on	 the	 response,	 it	 is	 recommended	 to	 consider	
whether:

• the	design	can	cope	with	names	from	cultures	which	don’t	have	
first	and	last	names

• the	abbreviation	DOB	makes	sense	or	whether	it’s	better	to	spell	
out	the	field	to	date	of	birth

• DOB	makes	sense	when	combined	with	DOD	(date	of	death)	or	
DOJ	(date	of	 joining)

 Publishing bulk data
Make	data	available	in	CSV	formats	as	well	as	JSON	when	you	want	
to	publish	bulk	data.	This	makes	sure	users	can	use	a	wide	range	
of	tools,	including	off-the-shelf	software,	to	import	and	analyze	this	
data

UAE Government API First Guidlines

54

Attributes/Feature Guidelines/Recommendations

Rate Limiting/Throttling Service	 Provider	 should	 implement	 API	 to	 have	 control	 on	 Rate	
Limiting/Throttling	 the	 APIs

Metering and Billing Service	Provider	should	 implement	Open	APIs	that	should	support	
Metering	and	Billing

Privacy by Design Privacy	by	Design	approach	should	be	followed	when	developing	APIs

5. Technical Guidelines

55

5.3. Error Handling
A	 robust	 error	 handling	 strategy	 is	 required	 to	 handle	 the	 various	
errors	 and	 exceptions	 encountered	 while	 processing	 the	 service	
requests	 and	 responses.	 	 Good	 error	 handling	 implementation	will	
increase	the	service	reliability	and	provide	the	end	user	or	application	
higher	visibility	and	confidence	about	the	service.		An	error	in	a	service	
can	occur	due	to	a	multitude	of	factors,	some	may	be	system	related	
and	some	business	data	and	process	flow	related	(assuming	all	logical	
and	programming	errors	are	eliminated	in	the	testing	phase	and	the	
deployed	application	in	production	is	already	a	robust	one).	As	long	as	
all	these	errors	are	trapped	and	reported	accurately	in	a	user	friendly	
manner,	with	sufficient	 information	 to	 track	 the	error	and	 take	any	
required	subsequent	actions	on	the	error	(to	mitigate	its	cause),	the	
service	reliability	and	its	robustness	stands	intact.

⁞ 5.3.1⁝ Usage Recommendations

The	 basic	 rationale	 behind	 exception	 handling	 is	 to	 catch	 errors	
and	report	them.		The	common	error	handling	framework	is	built	to	
address	 the	 below	 mentioned	 points.

• A	detailed	and	user	friendly	explanation	of	the	error• Methods	to	notify	the	user

• Guidelines	for	the	developer	to	handle	the	exceptions• What	types	of	exceptions	should	be	handled?

The	basic	rationale	behind	exception	handling	is	to	catch	errors	and	
report	 them.	 A	 framework	 for	 error	 handling	 should	 address	 the	
following	 questions:
1} What	is	the	level	of	detail	that	is	needed	in	reporting	the	exception?	
2} How	should	the	user	be	notified	of	the	exception?	
3} As	a	developer	where	do	you	handle	these	exceptions?	
4} Should	we	handle	every	exception?

UAE Government API First Guidlines

56

Errors	 and	 exceptions	 could	 occur	 while	 processing	 the	 request/
response	 within	 the	 Service	 Provider.	 As	 a	 principal,	 it	 is	
recommended	to	handle	the	exceptions	wherever	possible	and	to	pass	
appropriate	response	messages	to	the	invoking	services.		This	helps	
in	understanding	the	error	scenarios	better	and	resolving	the	issues	
without	 delays.

The	 exceptions	 can	 occur	 within	 the	 service	 hosted	 by	 the	 Service	
Provider.		These	exceptions/errors	should	be	handled	as	detailed	out	
in	 the	 section	 below	 and	 appropriate	 error	 codes	 and	 descriptions	
should	 be	 sent	 to	 the	 invoking	 service.	 	 Service	 Providers	 should	
handle	 these	 errors	 appropriately.

The	following	type	of	exceptions	can	happen	at	service	level:
1} Business	Validation	Failures
2} Technical	Validation	Failures
3} System	Failures

⁞ 5.3.2⁝ Types of Errors

5. Technical Guidelines

57

The	 following	 table	 lists	 down	
the	 common	 exceptions	 and	 the	
expected	 response	 from	 Service	
Provider	 for	 the	 above	 type	 of	
exceptions.
Table	13 Error Types

UAE Government API First Guidlines

58

Exception Type Exception Response – REST
services Corrective action

Business	Validation	
Failure

Request	not	meeting	
business	criteria	such	
as	age,	financial	status,	
etc.

Response with
appropriate	response	
code	and	description	in	
the	body

Service	Consumer	
should resend
the	request	after	
populating	the	
mandatory	fields

Technical	Validation	
Failure

Invalid	request

Response with
appropriate	response	
code	and	description	in	
the	body

Service	Consumer	
should	resend	a	valid	
request

Technical	Validation	
Failure

Internal	database	
connectivity	issues	
in	Service	Provider	
System	or	any	other	
internal	errors

Response with
appropriate	response	
code	and	description	in	
the	body

Service	Provider	should	
fix	the	issue	with	their	
internal	systems	and	
service	Consumer	
should	retry	sending	
the	request

Technical	Validation	
Failure

Incorrect/Invalid	
authentication	
credentials

Appropriate	HTTP	
status	codes	along	with	
response	code	and	
description	in	the	body

Service	Consumer	
should	update	the	
authentication	
credentials	and	Service	
Consumer	should	retry	
sending	the	message

System	Failure Service	Down
Appropriate	HTTP	
status	codes

Service	Provider	should	
ensure	the	service	is	
available	and	service	
Consumer	should	retry	
sending	the	request

System	Failure
Service	Provider	
servers	not	reachable

Appropriate	HTTP	
status	codes

Service	Provider	should	
ensure	the	server	is	
available	and	Service	
Consumer	should	retry	
sending	the	request

Technical	Validation	
Failure

Request	schema	
validation	failure

Appropriate	HTTP	
status	codes	along	with	
response	code	and	
description	in	the	body

5. Technical Guidelines

59

5.4. Logging
⁞ 5.4.1⁝ Log Levels

The	 log	 levels	within	 the	Service	Provider	 is	 a	 common	 logging	 framework	 is	 used	 to	 set	 the	 type	 of	
messages	 that	shall	be	 logged	 in	 the	service	specific	 log	file.	 	The	various	 log	 levels	are	given	below.

Table	13	Log	levels

Log Level Description

ALL All	levels	including	custom	levels

TRACE Designates	finer-grained	informational	events	than	the	DEBUG

DEBUG Designates	fine-grained	informational	events	that	are	most	useful	to	
debug	an	application

ERROR Designates	 error	 events	 that	 might	 still	 allow	 the	 application	 to	
continue	 running

FATAL Designates	 very	 severe	 error	 events	 that	 will	 presumably	 lead	 the	
application	 to	 abort

WARN Designates	potentially	harmful	situations

INFO Designates	informational	messages	that	highlight	the	progress	of	the	
application	at	coarse-grained	level

OFF The	highest	possible	rank	and	is	intended	to	turn	off	logging

UAE Government API First Guidlines

60

⁞ 5.4.2⁝ Log Layout

Conversion Character Description

d Used	to	output	the	date	of	the	logging	event

p Used	to	output	the	priority	of	the	logging	event

m Used	to	output	the	supplied	message	associated	with	the	logging	
event

n Used	 to	output	 the	platform	dependent	 line	separator	character	or	
characters

Services	Provider	should	use	the	layout	and	the	conversion	pattern	to	format	the	logging	information.		The	
layout	is	set	to	%d{yyyy-MM-dd	HH:mm:ss:SSS	zzz	-}6%p	-	%m%n	

Table	14	Log	Layout	Mapping

An	example	for	a	debug	message	written	using	the	common	logging	framework	would	be	as	follows:
15:05:40:162 29-08-2016	GST	-	DEBUG	–	Message	sent	using	logDebug	service

5. Technical Guidelines

61

5.5. API Documentation

API	documentation	helps	your	users	integrate	with	Providers’	API	by	
explaining	what	it	is	and	how	to	use	it.	API	documentation	should	at	
least	contain	the	below	items	with	sufficient	description.	It	is	strongly	
recommended	to	use	Open	API	Specification	(OAS)	or	similar	prevalent	
API	standards
Table	15	API	Documentation

Documentation
Requirements Description

API Introduction A	short	introduction	describing	the	API

Resources

A	resource	 is	a	piece	of	data	or	a	collection	of	data	provided	by	an	
API	in	response	to	a	request	similar	to	a	row	in	a	database.	Provide	
a	short	description	of	each	of	your	API	resources	so	users	are	clear	
what	they’re	for	and	why	they	should	call	 them.	You	can	read	more	
about	what	 resources	 are	 in	Roy	 Fielding’s	 dissertation.

Endpoints and methods

Within	the	resource	description,	list	all	of	the	endpoints	related	to	
that	resource.	The	endpoints	are	the	paths	a	user	will	use	(or	call)	
to	access	or	manipulate	the	resource.	The	API	you’re	documenting	
is	likely	developed	to	accept	standard	methods	in	resource	calls,	for	
example	GET,	PUT,	POST	or	DELETE.	Even	though	these	methods	
are	standard,	you	should	still	list	the	methods	applicable	to	the	API	
you’re	documenting	and	describe	their	functionality.

Parameters

Parameters	are	optional	filters	that	affect	what	 the	API	will	return.	
Next	 to	 the	documented	endpoints,	 you	should	 list	any	parameters	
for	that	endpoint	with	a	short	description.	If	you	have	different	types	of	
parameters,	for	example,	header	and	path	parameters,	you	may	find	
it	useful	to	group	them	by	type.

UAE Government API First Guidlines

62

Documentation
Requirements Description

Example requests and
responses

One	of	the	most	useful	things	in	an	API	reference	is	example	code.	For	
each	endpoint,	you	should	provide	an	example	request,	with	example	
parameters	(if	they	are	available	for	that	endpoint).
The	 request	 is	 usually	 published	 as	 a	 code	 snippet	 using	 curl,	
but	 it	 can	 be	 useful	 to	 show	 the	 request	 in	 different	 programming	
languages	 if	 available.
Service	Provider	should	also	publish	an	example	response	as	a	code	
snippet,	in	the	same	programming	language	as	the	example	request.	
It	should	show	the	exact	response	a	user	can	expect	from	the	example	
request.
Be	aware	that	your	examples	will	not	tell	service	consumers	what	the	
fields	mean,	 for	example	 if	 the	fields	are	optional	or	mandatory,	or	
if	they	carry	any	constraints.	If	this	information	is	not	clear	from	the	
example,	consider	including	explanations	alongside	your	example.

Error codes

The	 Service	 Provider	 should	 include	 specific	 error	 responses	
associated	 with	 an	 endpoint	 close	 to	 the	 endpoint	 documentation	
or	 publish	 them	 together	 at	 the	 end	 of	 your	API	 reference.	Even	 if	
you	only	expect	standard	responses	such	as	400 or 200,	you	should	
interpret	 their	 specific	 meaning	 to	 your	 API.

Authentication

If	 the	 Service	 Consumer	 needs	 to	 authenticate	 before	 they	 use	 an	
API,	 Service	 Providers	 should	 include	 a	 section	 explaining	 the	 API	
authentication.	 For	 example,	 the	API	 documentation	includes	 a	
separate	 section	 on	 how	 to	 get	 and	 send	 an	 API	 key.

Authorization

If	access	to	parts	of	your	API	requires	authorization,	have	a	section	in	
your	documentation	explaining	how	a	user	can	gain	access.	You	can	
then	link	to	this	section	from	the	endpoints	or	resources	that	require	
authorization.

Rate limits

If	Service	Provider	API	uses	rate	(or	record)	limiting,	Service	Provider	
should	 explain	 how	 many	 requests	 users	 can	 make	 within	 a	 set	
period.	Even	if	it’s	unlikely	a	user	will	meet	the	maximum	number	of	
requests,	you	must	still	explain	what	will	happen	if	users	exceed	that	
limit,	including	the	type	of	error	message	they	can	expect	and	how	to	
correct	that	error.

Versioning information

Service	Provider	should	tell	users	how	versioning	works	for	API	and	
version	the	documentation	alongside	the	API.
Each	version	of	your	documentation	should	include	a	clear	introduction	
explaining	what	makes	it	different	from	the	version	before.	You	should	
include	all	revision	history	 for	your	API	documentation	and	make	 it	
easy	for	users	to	switch	between	documentation	for	different	versions.

5. Technical Guidelines

63

Documentation
Requirements Description

Information Handling, Incident
Management and Risk
Management

Availability, Ownership and
Depreciation Policies

Governance Frameworks e.g	PCI	compliance	for	Payment	API

API Lifecycle Management

The	guidelines	should	define	policies	for	API	Lifecycle	management	
PLANNED	 ->	 BETA	 ->	 LIVE	 ->	 DEPRECATED	 ->	 RETIRED	 and	
also	suggest	naming	conventions	addressing	backward	incompatible	
changes.

⁞ 5.5.1⁝ Generating API Documentation

You	can	write	an	API	reference	by	hand	or	auto	generate	a	reference	from	comments	in	the	code	of	the	
API itself.
There	are	many	tools	that	let	you	auto	generate	an	HTML	file	from	developer	code	comments	to	display	
to	your	users.	The	benefit	of	this	approach	is	that	when	developers	update	comments	in	their	code,	your	
docs	will	be	updated	too.

You’ll	still	need	to	tidy	up	the	reference	information	after	it’s	been	generated	and	make	sure	it	fits	with	any	
accompanying	guidance.	Ideally	you	will	have	a	technical	writer	to	help	you	do	this.
You	can	use	a	number	of	criteria	to	choose	between	different	auto	generation	tools.	As	well	as	the	standard	
considerations	when	choosing	new	technology,	you	should	also	consider	if	the	tool:

• supports	the	programming	language	you	need

• outputs	in	a	suitable	format,	for	example	HTML

• supports	the	format	options	you	might	need,	for	example	code	samples,	tables,	images

OpenAPI	 (formerly	 known	 as	 Swagger)	 is	 commonly	 used	 in	 government	 for	 RESTful	 API	 reference	
documentation.	 Alternative	 tools	 include:

 • WADL

 • RAML

 • I/O Docs

 • API Blueprint

 • JSON	Schema

UAE Government API First Guidlines

64

5.6. API Other Considerations

1} It	will	be	the	responsibility	of	the	API	Consumers	and	API	Providers	to	utilize	the	credentials	
or	system	details	shared	between	each	other	only	for	the	intended	purpose	by	authorized	users	
and	systems	only.
2}	 It	 is	recommended	to	get	the	customer	consensus	to	use	his/her	 information.	This	can	be	
added	 to	 the	UI	used	 to	provide	 the	service	 to	 the	user.	Moreover,	 the	 front	desk	employees	
should	be	educated	 to	 inform	the	user	 if	 their	 information	will	be	accessed	on	his	behalf.
3}	 It	 is	also	recommended	to	have	data	confidentiality	agreement	between	the	entity	and	the	
employees	 involved	 in	processing	the	 information	shared	through	the	API	Consumer	and	API
Provider
4}	 The	 maintenance	 of	 the	 API	 and	 the	 consuming	 application	 will	 be	 the	 responsibility	 of	
respective	entities	and	the	maintenance	of	published	services	will	be	the	responsibility	of	API
Provider	 Team.	
5}	Point	of	Contacts	should	be	made	available	by	entities	for	coordination	of	any	activities.
6}	Entities	will	be	responsible	 for	providing	resources	during	 the	development	and	 testing	of	
services	before	go-live	as	well	as	post	go-live.	
7} API	Provider	owns	and	is	responsible	for	the	business	process/logic	and	transformations	at	
service	level.
8}	Reports	of	the	service	usage	will	be	made	available	to	entities	by	API	Provider.

5. Technical Guidelines

65

References6.

UAE Government API First Guidlines

66

We've	adapted	these	guidelines	capitalizing	on	the	work	done	by	other	digital	governments,	including:

• Government	of	Canada	(https://www.canada.ca/en/government/system/digital-government/modern-
emerging-technologies/government-canada-standards-apis.html)

• UK	Digital	Service	(https://www.gov.uk/guidance/gds-api-technical-and-data-standards)• 18F	(the	United	States	General	Services	Administration)	(https://github.com/18F/api-standards)

• Government	of	New	Zealand	(https://www.digital.govt.nz/standards-and-guidance/technology-and-
architecture/application-programming-interfaces-apis/api-implementation-guidance/)

• Government	of	the	State	of	Victoria,	Australia	(https://github.com/VictorianGovernment/api-design-
standards)

• Guiding	Principles	of	REST	(https://restfulapi.net/)	• Architectural	Styles	and	the	Design	of	Network-based	Software	Architectures	(https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm)	

5. Technical Guidelines

67

